

Hereditary haemochromatosis: implications for donors, products and patients

Gilles Folléa

French Blood Establishment (EFS), Saint Denis, France

Conflict of interest: none

17th International Haemovigilance Seminar, Paris, 11/03/2016

Agenda

- Background: policies for HH, blood donation & BC use
- Scientific and ethical questions
- Updating evidence
- Ethical principles for donors and patients: applicability to HH donations for patients?
- Perspectives, challenges

Worldwide policies on HH and blood donation- Pauwels et al, 2013

Web-based questionnaire distributed	to 44 blood services in 41 countries,
responses from 35 BS in 33 countries ((80%)

☐ HH carriers/patients accepted as blood donors

Asymptomatic carriers, normal iron	23	Symptomatic, mainten.	9
Asymptomatic carriers, abnormal iron	19	Symptomatic, depletion	7
Asymptomatic (recovered), mainten.	16	None	11

- ☐ Approval of donor physician: 11 / Prescription from treating physician AND approval donor physician: 8
- ☐ Higher donation frequency allowed: 8/24
- \square HH contribution to blood donor pool: <1% (12/24) to 1-5 % (5)

Blood donation from HH patients: scientific and ethical questions

Conry-Cantilena 2001, León de González 2007

- Blood safe?
 - Possible contamination with siderophilic bacteria, e.g.
 Yersinia sp.
 - Potential higher susceptibility for viral infections?
- Quality of HH blood suitable for blood transfusion?
- Donation voluntary?
 - Phlebotomy as blood donation: possible financial incentive?
 - Necessity of phlebotomy: not qualifying as "voluntary"?

Is blood of uncomplicated HH patients safe and effective for blood transfusion?

De Buck et al 2012

Cochrane review: 3470 citations, 80 references, 6 observational studies

199

GRADE level of evidence: low to very low				
Study Population		Assessment		
Luten <i>et al.</i> ,2008, NL	8 HH ,15 BDs	Haematologic & biochemical variables RBCC up to 50 d. storage		
Sanchez et al., 2001,	52,650 BD including 197 HH	Unreported deferrable risks, TTI screening		

NL		up to 50 d. storage
Sanchez <i>et al.</i> , 2001, USA	52,650 BD including 197 HH	Unreported deferrable risks, TTI screening

USA		
Leitman <i>et al.</i> , 2003, USA	130 HH	Seroconversions for TTI agents, 27 Mo

2003, USA		
Jolivet-Gougeon et al., 2007, FR	236 HH, 303 BDs	Serum Abs against <i>Yersinia</i>
Jolivet-Gougeon et al., 2008, FR	26 IO HH, 35 ID HH, 33 controls	Serum antibacterial activity against S. typhimurium Significant decrease for IO HH

llen <i>et al.,</i> 91, USA	5 IO HH, 5 controls	Survival of <i>Vibrio vulnificus</i> in blood Significant increase for HH
ivet-Gougeon al., 2008, FR	26 IO HH, 35 ID HH, 33 controls	Serum antibacterial activity against S. typhimurium Significant decrease for IO HH
al., 2007, FR		

Quality of HH erythrocytes: mean cell volume Luten et al., 2008

Weekly measures of MCV (mean values) during storage of RCCs of different conditions (\Box , HWB; \bigcirc , HEA; \blacksquare , DWB; and \bigcirc , DEA). n = 4 for HWB, HEA, and DEA and n = 11 for DWB.

Morphology of HH erythrocytes:

Pretorius et al 2014

Methods

 Light microscopy and scanning electron microscopy of RBC from 13 HH patients and 4 patients with hyperferritinemia (HF) vs 17 controls

Main findings

- HH erythrocytes distorted with a greater axial ratio than controls (close to 1, discoid shape): p<0.0001
- Differences reversed by iron chelators desferal or clioquinol,
 and free radical trapping agents salicylate or selenite

Conclusions

— Aberrant RBC morphology of HH and HF erythrocytes caused, at least in part, by "unliganded iron"? Box plot of axial ratios of 20 cells from 17 healthy individuals (n = 340) vs axial ratios of 20 cells from 13 HH individuals (n = 260) with and without chelating and other compounds (n = 260) per compound).

Courtesy E. Pretorius et al 2014

	CONTROLS	нн	HH + DES	HH + SEL	HH + SAL	HH + CLIO
Miń	1.000	1.002	1.001	1.001	1.000	1.000
Qĺ	1.024	1.211	1.034	1.044	1.047	1.035
Median	1.049	1.381	1.070	1.087	1.115	1.077
Q3	1.088	1.695	1.131	1.158	1.213	1.143
Max	1.439	3.187	1.833	1.682	2.279	2.866
IQR	0.065	0.484	0.097	0.115	0.166	0.108
SD value	0.059	0.365	0.102	0.118	0.179	0.151

Micrographs from HH and HF individuals.

Courtesy E. Pretorius et al 2014

A) RBC from HH individual with high SF; B) RBC from HH individual with low SF; C) elongated RBC from HF individual with high SF; D) WB smear from HH with added thrombin; E) PRP smear from HH with added thrombin; F) PRP smear from HF individual with added thrombin

Micrographs of samples from patients with HH with added desferal.

Courtesy E. Pretorius et al 2014

- A) Whole blood with added 10 mM desferal; B) WB with added thrombin and 10 mM desferal;
- C) PRP smear, with added thrombin and 10 mM desferal; D) WB with added 0.5 mM desferal;
- E) WB with added thrombin and 0.5 mM desferal; F) PRP smear, with added thrombin and 0.5

mM desferal; G) Light microscopy of WB with 0.5mM desferal

Validity of the Pretorius's study?

- HH diagnosis in patient group?
 - 2-4 C282Y/C282Y, 1 H63D/H63D, 3-6 C282Y/H63D...?
 - Iron status: normal SF in 7-10/22?
 - RBC studies in 13/22: selection criteria?
- Blood samples: collection, transport, storage?
- Morphologic studies: which RBC measured?
- Non transferrin-bound iron: not measured
- 30 μM FeCl₃: not physiological condition.
- Proper controlled study needed to investigate increased MCV in HH patients.

Mutations in the HFE gene: potential advantage? Hermine et al 2015

 Frequency of mutations in HFE gene (H63D, C282Y,...) in French elite athletes (energetic sport: 129; non energetic sport: 41) vs controls matched for age, gender and geographical origin (219).

➤ Athletes: 41%

➤International podium group: 80.4%

➤ Controls: 27%

Impact of HFE mutation on Hb concentration in athletes & controls. Hermine et al 2015

Ethical principles for D & R of human bodily materials

Well acknowledged **four principles of biomedical ethics** to protect donors' and patients' safety:

- Autonomy
- Non-maleficence
- Beneficence

Justice

Human dignity

Ethical principles for donors 1. Autonomy

- Respecting the decision-making capacities of autonomous donors: reasoned informed choices about their donations.
- Respect for autonomy involves
 - Information (risks to donor) and consent before donation.
 - No undue influence or pressure: medical decision of phlebotomy impacting HH donor autonomy?
- Donor's autonomy could impact patient's safety: HH donor led to hide personal health information and prevent accurate risk assessment?

Ethical principles for donors 2. Beneficence

- Considering the balancing of benefits of blood donation against its risks and costs
- Not applicable to blood donors:
 - donor submitted to a medical procedure for which he/she will not derive any direct medical benefit
 - any adverse reaction caused by the collection procedure will not be offset by a benefit to donor.

HH patients: donors or patients?

Ethical principles for donors 3. Non-maleficence

Avoiding the causation of harm to the donor

- Compliance with professional standards
- Continuous improvement of knowledge and prevention of adverse reactions to blood and blood component collections
- Avoidance of unnecessary donor selection

HH patients: donors or patients?

Ethical principles for donors 4. Justice

- Avoiding the "burden of donation" being shifted to underprivileged populations
- Remuneration of donors: risk that those who are most likely to donate belong to *lower socio-economic groups* and be the least likely to benefit from blood products if they needed blood.

Higher donation frequency for HH carriers/patients?

Ethical principles for patients 1. Autonomy

- Right for autonomous patients to determine what they
 will (and will not) be done with their own person (to
 choose or refuse any proposed medical treatment).
- Respect for autonomy involves
 - Information, professional and truthful, not withholding information from patient and/or family, and not advocating for one practice that might not be in the patient's best interest.
 - Consent before decision of transfusion or no-transfusion.

Should recipients be informed when blood from HH?

Ethical principles for patients 2. Beneficence

 Considering the balancing of benefits of blood transfusion against its risks and costs

 The healthcare professional should act in a way that benefits the patient.

 Ethical expression of the physician's commitment to do or promote only good things for patients.

HH RBC morphological changes? Impact on recipients?

Ethical principles for patients 3. Non-maleficence

- Avoiding unnecessary or unreasonable harm to patients
- Compliance with professional standards
- Not treating a patient without a documented medical indication based on the best available evidence
- Harm should not be disproportionate to the benefits of treatment.
- HH blood as safe as blood from normal donors?
 - Possible higher bacterial risk for PC, FFP?
 - Behaviour of HH RBC in recipients?

Ethical principles for patients 4. Justice

 Patients should be treated equally for the same healthcare condition.

- Medical decisions: based on the best available evidence
- **Equitable access** to treatments: ensured for patients and adapted to the local healthcare situation.
- Discrimination according to factors such as patients' resources, ethnicity: avoided.

HH RBC equivalent to RBC from normal donors?

Nuffield Council on Bioethics intervention ladder: a tool for considering ethical acceptability of donor incentives

HH patients vs donors: an ethical dilemma?

- Donor's ethical principles in conflict with patient's ones?
 - Autonomy and beneficence of HH donors
 - conflicting with autonomy, beneficence, non maleficence and justice applying to transfused patients?
- Renewed ethical reflexion required
 - Weighing relative acceptability for each of 4 ethical principles to protect transfused patients and HH patients/donors?

Perspectives, challenges

Available evidence

- Platelets, plasma from HH patients: higher bacterial risk?
- RBC: increased MCV, what beyond?

Ethical issues:

- HH patients: donors or patients?
- Recipients of HH RBC: to be informed?

> For the benefit of patients shouldn't we consider:

- ☐ Focus from **haemovigilance** on PC, FFP from HH patients?
- ☐ Assessing **RBC changes in HH**, in a **controlled study**?
- ☐ Depending on results
 - ☐ Limiting HH donations to **before iron overload**?
 - □Adding HH with iron overload as CI to blood donation?

Acknowledgements: warm thanks to Patricia and Robert Evans, and Pierre Brissot for the European Federation of Associations of Patients with Haemochromatosis (EFAPH) for helpful discussions.

Thank you for your attention, Your questions, comments